Effect of potassium doping on the structural and catalytic properties of V/Ti-oxide in selective toluene oxidation
نویسندگان
چکیده
Small addition of potassium to V/Ti-oxide catalyst (K:V=0.19), consisting of 3.7 monolayer VOx , increased activity and selectivity in partial oxidation of toluene. In order to elucidate the nature of vanadia species formed on the surface of V/Ti-oxide upon potassium doping, the catalysts were studied by transient kinetics method. The transient product responses during toluene oxidation by the oxygen present in the catalyst were compared for K-doped and non-doped samples. The formation of CO2 decreased and formation of benzaldehyde increased with addition of potassium. This suggests a lower surface concentration of electrophilic oxygen (O−, O2−), which is usually responsible for the deep oxidation, and a higher concentration of nucleophilic oxygen (O2−), responsible for the partial oxidation. The catalysts were characterised by means of HRTEM, FT-Raman spectroscopy and 51V NMR. Potassium addition introduces a disorder in the crystalline structure of bulk V2O5 particles resulting in better spreading of V2O5 over TiO2 surface. The interaction of V2O5 with TiO2 was facilitated upon K-doping, leading to the increased formation of monomeric vanadia species, which are the active sites in toluene partial oxidation to benzaldehyde. © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Catalytic oxidation of airborne toluene by using copper oxide supported on a modified natural diatomite
The catalytic oxidation of toluene over copper oxide supported on natural diatomite was investigated. The catalyst was prepared by the wet impregnation method and characterized by using the Brunauer Emmett Teller (BET), field emission Scanning Electron Microscopy (FESEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and Temperature-programmed reduction (TPR) analysis. The highest catalytic ...
متن کاملCatalytic oxidation of airborne toluene by using copper oxide supported on a modified natural diatomite
The catalytic oxidation of toluene over copper oxide supported on natural diatomite was investigated. The catalyst was prepared by the wet impregnation method and characterized by using the Brunauer Emmett Teller (BET), field emission Scanning Electron Microscopy (FESEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and Temperature-programmed reduction (TPR) analysis. The highest catalytic ...
متن کاملFabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties
In this study, different samples of Niobium and Vanadium co-doped titania thin films (5-10-15 mol% Nb and 5-10-15 mol% V) were prepared via sol−gel dip coating method, using niobium chloride as niobium precursor, ammonium metavanadate as vanadium precursor, and titanium (IV) butoxide (TBT) as titanium precursor. The effects of doping amount on the structural, optical, and photo-catalytic prope...
متن کاملFabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties
In this study, different samples of Niobium and Vanadium co-doped titania thin films (5-10-15 mol% Nb and 5-10-15 mol% V) were prepared via sol−gel dip coating method, using niobium chloride as niobium precursor, ammonium metavanadate as vanadium precursor, and titanium (IV) butoxide (TBT) as titanium precursor. The effects of doping amount on the structural, optical, and photo-catalytic prope...
متن کاملA Study on the Adsorption and Catalytic Oxidation of Asphaltene onto Nanoparticles
The use of nanoparticles, including metal oxide surfaces, as asphaltene adsorbents is a potential method of removing and/or upgrading asphaltenes. The adsorption of two asphaltene types, extracted from two types of Iranian crude oil, onto nanoparticles (TiO2, SiO2, and Al2O3) are assessed and the thermal behavior of the adsorbed asphaltenes is examined under an oxidizing atmosphere through ther...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000